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Abstract

This paper addresses analysis of wave motions in an unbounded sandwich plate with and without heavy fluid loading in

the plane problem formulation. The effects of coupling of otherwise independent upon each other in-phase and anti-phase

(with respect to the transverse motion of skins) modes, which could be produced by uneven pre-stress of the skins, uneven

properties of the acoustic media on the opposite sides of the plate, or by a difference in properties of the skin plies, are

brought to light. These effects are called hereafter ‘symmetry-breaking’ for brevity. Although the suggested methodology is

applicable to treat the above-mentioned cases in a general manner, this paper is concerned with the use of classic

perturbation theory to study coupled in-phase and anti-phase modes in a plate of symmetric composition. The coupling

perturbation parameter is introduced and is shown to be asymptotically small. The predictions of the perturbation theory

are compared with the direct solutions in the cases of regular and singular perturbation and very good agreement is

observed.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

This paper continues analysis of wave motions in an unbounded sandwich plate with heavy fluid
loading in plane problem formulation performed in Refs. [1–4]. Sandwich plates and shells are widely
used in many technical applications, e.g., naval architecture, aerospace or chemical industry, etc because
this composition of a thin-walled structure conveniently combines the properties of high strength and
low weight. In practice, it is often the case that a sandwich plate of symmetric composition is subjected
to some symmetry-breaking loading. Most typically, the symmetry is broken by an uneven static
pre-stress of skin plies or—which is particularly relevant for naval and aerospace engineering—by a
difference in properties of the surrounding media. In these cases, the exact theory may be used
straightforwardly (see, for example Refs. [5,6] in the case of no fluid loading), but it is relatively difficult to
solve the transcendental dispersion equation and to identify the modes. It also presents serious difficulties
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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to join the elementary theories, which are valid in refined symmetric case [1–4] to capture the
symmetry-breaking effects, because they are derived independently based on some assumptions,
which are not consistent with each other. The meaningful alternative to overcome these difficulties is offered
by use of a perturbation theory, which is perfectly applicable because the above-mentioned symmetry-
breaking effects are weak. This paper addresses exactly the issues of asymptotic analysis of perturbed
dispersion curves for otherwise independent upon each other in-phase and anti-phase (with respect to the
transverse motion of skins) modes. The theoretical background of such an analysis is given in classic
publications [7,8].

In Section 2, propagation of waves in sandwich beams with heavy fluid loading is considered in the
framework of a theory of elasticity for the core ply of a plate, standard Kirchhoff theory for skin plies and
standard acoustics for the surrounding media. The system of governing equations derived in this section is
valid for arbitrary composition of a sandwich plate (i.e., not necessarily symmetric) and for arbitrary fluid
loading (i.e., different fluids on the different sides). Two classes of wave motions (‘in-phase’ and ‘anti-phase’
ones) are introduced for the case of symmetric composition of a sandwich plate in Section 3, and the coupling
between them is studied. Section 4 addresses the weak coupling generated by uneven pre-stress of skin plies of
a plate with heavy fluid loading on both sides, whereas one-sided heavy fluid loading is considered in Section
5. Finally, in Section 6 conclusions are presented.
2. The problem formulation

Consider an infinitely long sandwich plate consisting of two thin and relatively stiff plies (skins) and a soft
core ply between them as is shown in Fig. 1a. It is loaded on both sides by acoustic media, in general, of
different properties. Mechanical properties of skin and core plies of sandwich plates used, for example, in
naval or aerospace structures are very different. Specifically, elastic and geometry parameters of skin
plies considered individually are normally those of conventional thin plates, so that their dynamics are
adequately described by a standard Kirchhoff theory. However, due to the interaction between skin and
core plies, it is not sufficient to take into account only their flexural wave motions, and the longitudinal
components of displacements also should be included to analysis of the wave propagation. The corresponding
Fig. 1. Sandwich plate composition (a) displacements in plies (b) distributed forces.
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governing equations are

D1w
4ð Þ
1 þ s1h1w001 þ r1h1 €w1 ¼ qw1 þm01 � pþ x; t;

h

2
þ h1

� �
, (1a)

E1h1u
00
1 � r1h1 €u1 ¼ �qu1, (1b)

D3w
4ð Þ
3 þ s3h3w

00
3 þ r3h3 €w3 ¼ qw3 þm03 þ p� x; t;�

h

2
� h3

� �
, (1c)

E3h3u
00
3 � r3h3 €u3 ¼ �qu3. (1d)

Here hk, k ¼ 1, 3 and h are thicknesses of skin and core plies, uk (x,t) and wk (x,t), k ¼ 1, 3 are the
longitudinal and the flexural displacements of the mid-surfaces of skin plies, positive if co-directed with the co-
ordinate axes in Fig. 1a. Respectively, qwk (x,t) and quk (x,t), k ¼ 1, 3 are the distributed longitudinal and
transverse forces acting on skin plies, see Fig. 1b. The distributed moments mk (x,t), k ¼ 1, 3 are also taken
into account as well as static pre-stresses sk, k ¼ 1, 3 acting in skin plies, Dk ¼ Ekh3

k=12 1� n2
� �

, k ¼ 1, 3 is the
conventional formulation of bending stiffness, primes and dots denote derivatives on spatial and temporal co-
ordinates x and t, respectively. The elastic properties of the material of each ply are specified by densities rk,
k ¼ 1, 3, the Young moduli Ek, k ¼ 1, 3, and Poisson’s ratios n1 ¼ n3 ¼ n. The right-hand side of Eq. (1) are
composed of stresses acting at the interfaces between skin and core plies. In general, they may also contain
external driving forces and moments, but as far as propagation of free waves is concerned an external loading
is omitted. An acoustic pressure in Eq. (1a,d) is defined as

p� x; t; zð Þ ¼ �r� _j� x; t; zð Þ, (2)

and velocity potentials in an acoustic medium satisfy the wave equation

Dj� �
1

c2�
€j� ¼ 0. (3)

The continuity conditions at the fluid–structure interfaces are formulated as

z ¼ �
h

2
� h3 : _w3 x; tð Þ ¼

qj� x; t; zð Þ

qn�
¼

qj� x; t; zð Þ

qz
,

z ¼
h

2
þ h1 : _w1 x; tð Þ ¼ �

@jþ x; t; zð Þ

@nþ
¼
@jþ x; t; zð Þ

@z
. ð4Þ

In Eqs. (2–4), indices 7 stand for the upper and the lower half-spaces, see Fig. 1. The properties of acoustic
media in these half-spaces are specified by densities r7 and sound speeds c7, the outer unit normal vectors are
designated as n7.

As has been discussed in the Introduction, the core ply of a sandwich plate is much thicker and it is
composed of material which is much softer than the skin plies. Thus, an elementary theory of plates is not
applicable and the dynamics of a core ply should be described by the standard theory of elasto-dynamics, see
for example Ref. [9]. In the plane problem formulation, Lamé equations are

q2f
qx2
þ

q2f
qz2
�

1

c21

q2f
qt2
¼ 0, (5a)

q2c
qx2
þ

q2c
qz2
�

1

c22

q2c
qt2
¼ 0. (5b)

Here c21 ¼ E 1� nð Þ=r 1þ nð Þ 1� 2nð Þ and c22 ¼ E=2 1þ nð Þr are velocities of acoustic and shear waves in the
material, respectively. The material density of the core ply, its Young’s modulus and Poisson’s ratio are
denoted as r, E and n, respectively. Potentials f and c are introduced to formulate displacements as

u2 ¼
qf
qx
�

qc
qz
; w2 ¼

qc
qx
þ

qf
qz

. (6)
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Then stresses (see Fig. 1b) are defined as [9]

sx ¼ lDfþ 2m
q2f
qx2
�

q2c
qxqz

� �
,

sx ¼ lDfþ 2m
q2f
qx2
�

q2c
qxqz

� �
,

txz ¼ m 2
q2f
qxqz

þ
q2c
qx2
�

q2c
qz2

� �
ð7Þ

In these equations, l and m are Lamé elastic moduli, defined as

l ¼
nE

1þ nð Þ 1� 2nð Þ
; m ¼

E

2 1þ nð Þ
.

The system of differential equations (5) should be solved with the following compatibility conditions at the
interfaces:

z ¼
h

2
: w2 x; z; tð Þ ¼ w1 x; tð Þ; u2 x; z; tð Þ ¼ u1 x; tð Þ þ

h1

2

@w1 x; tð Þ

@x
, (8a)

z ¼ �
h

2
: w2 x; z; tð Þ ¼ w3 x; tð Þ; u2 x; z; tð Þ ¼ u3 x; tð Þ �

h3

2

@w3 x; tð Þ

@x
. (8b)

Since the functions uk (x,t), wk (x,t), k ¼ 1, 3 are defined for the mid-surfaces of skin plies, the continuity
conditions at the interfaces for the longitudinal displacements are formulated with the components
�hk=2qwk x; tð Þ=qx, k ¼ 1, 3 (i.e., the angles of rotation due to the flexural motion) taken into account. It is
consistent with the governing equations (1) for the skin plies, where distributed moments are also included.
This formulation is valid as long as the elementary Kirchhoff theory is applicable to describe wave motion in
the skins.

The interfacial distributed forces and moments are formulated as

qw3 x; tð Þ ¼ sz x;�
h

2
; t

� �
; qu3 x; tð Þ ¼ �txz x;�

h

2
; t

� �
; m3 x; tð Þ ¼

h3

2
txz x;�

h

2
; t

� �
, (9a)

qw1 x; tð Þ ¼ �sz x;
h

2
; t

� �
; qu1 x; tð Þ ¼ txz x;

h

2
; t

� �
; m1 x; tð Þ ¼

h1

2
txz x;

h

2
; t

� �
. (9b)

Hereafter the scaling is introduced as: x ¼ x̄h, z ¼ z̄h, uj ¼ ūjh, wj ¼ w̄jh, j ¼ 1,2,3.
Propagation of a harmonic coupled acoustic and elastic wave in an infinitely long plate with heavy fluid

loading is considered, so that

ūj ¼ Uj exp kx̄� iotð Þ; w̄j ¼W j exp kx̄� iotð Þ; j ¼ 1; 2; 3;

f ¼ F z̄ð Þ exp kx̄� iotð Þ; c ¼ C z̄ð Þ exp kx̄� iotð Þ:
(10)

Hereafter bars over non-dimensional variables are omitted, o is a positive excitation frequency and k is, a
priori, a complex wavenumber. Eqs. (10) are substituted into Eqs. (5), (7) and the problem in elasto-dynamics
for the core ply is formulated as

d2F
dz2
þ k2

þ
oh

c1

� �2
" #

F ¼ 0, (11a)

d2C
dz2
þ k2

þ
oh

c2

� �2
" #

C ¼ 0, (11b)

z ¼
1

2
:

dF
dz
þ kC ¼ h2W 1; kF�

dC
dz
¼ h2U1 þ

hh1

2
kW 1, (11c)
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z ¼ �
1

2
:

dF
dz
þ kC ¼ h2W 3; kF�

dC
dz
¼ h2U3 �

hh3

2
kW 3. (11d)

Velocity potentials in the acoustic media are sought in the form

j� x; t; zð Þ ¼ j 0ð Þ
� zð Þ exp kx� iotð Þ, (12)

so the wave equation (3) is reduced to a 1-D Helmholtz equation

d2j 0ð Þ
�

dz2
þ k2

þ
oh

c�

� �2
" #

j 0ð Þ
� ¼ 0. (13)

The solution of this equation is sought as

j 0ð Þ
þ zð Þ ¼ A1þ exp igþz

� �
þ A1� exp �igþz

� �
; gþ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
þ

oh

cþ

� �2
s

.

j 0ð Þ
� zð Þ ¼ A3þ exp ig�z

� �
þ A3� exp �ig�z

� �
; g� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
þ

oh

c�

� �2
s

.

The parameters A17, A37 should be selected to satisfy compatibility conditions (4) at fluid–structure
interfaces and the radiation condition, which is formulated at infinity for the upper and the lower half-spaces
occupied by the acoustic medium. Elementary algebra gives the following expressions for velocity potentials:

j 0ð Þ
þ zð Þ ¼

oh2

gþ
W 1 exp igþz

� �
; z4

1

2
,

j 0ð Þ
� zð Þ ¼

oh2

g�
W 3 exp �ig�z

� �
; zo�

1

2
.

Then the amplitudes of the contact acoustic pressure at the surfaces of skin plies are formulated via the
amplitudes of displacements as

pþ ¼ �
irþo

2h2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
þ

oh

cþ

� �2
s W 1; z ¼

1

2
, (14a)

p� ¼
ir�o

2h2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
þ

oh

c�

� �2
s W 3; z ¼ �

1

2
. (14b)

Finally, Eq. (1) are reduced to

E1h1

h
k2
þ r1hh1o2

� �
U1 ¼ �q̂u1, (15a)

E3h3

h
k2
þ r3hh3o2

� �
U3 ¼ q̂u3, (15b)

E1h
3
1

12 1� n2ð Þh3
k4
þ s1

h1

h
k2
�r1hh1o2 �

irþh2

gþ

#
W 1 ¼ q̂w1 � km̂1

"
, (15c)

E3h
3
3

12 1� n2ð Þh3
k4
þ s3

h1

h
k2
�r3hh1o2 �

ir�h2

g�

�
W 3

�
¼ �q̂w3 þ km̂3. (15d)
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The right-hand side of Eq. (15) are defined by formulas (9–10). These equations are valid for an arbitrarily
composed sandwich plate with heavy fluid loading at its both sides.
3. Coupling of the in-phase and anti-phase modes

In the earlier paper [1], the symmetric composition of a sandwich plate (h1 ¼ h3, E1 ¼ E3, r1 ¼ r3) has been
considered and two uncoupled classes of linear wave motions (in-phase and anti-phase with respect to the
transverse motion of skins) have been identified and analyzed separately. However, it is realistic to assume that
even in the case of symmetric original composition of a sandwich plate one of skin plies may experience
somewhat larger stress than its counterpart and that fluid loading is different (e.g., water and air) on opposite
sides of the plate. In such a case, the otherwise independent upon each other in-phase and anti-phase wave
motions become coupled due to these symmetry-breaking effects.

It is convenient to introduce the in-phase (W+, U�) and the anti-phase (W�, U+) components of
displacements of skin plies as

Wþ ¼
W 1þW 3

2
; U� ¼

U1�U3

2
;

W� ¼
W 1�W 3

2
Uþ ¼

U1þU3

2
;

(16)

while the elastic potentials are sought as

F zð Þ ¼ A1 sinh g1z
� �

þ A2 cosh g1z
� �

; g21 ¼ �k2
� oh

c1

� 	2
;

C zð Þ ¼ B1 cosh g2z
� �

þ B2 sinh g2z
� �

; g22 ¼ �k2
� oh

c2

� 	2
:

(17)

Then the boundary conditions (8) are formulated as

A1g1 cosh
g1
2

� 	
þ A2g1 sinh

g1
2

� 	
þ B1k cosh

g2
2

� 	
þ B2k sinh

g2
2

� 	
¼ Wþ þW�ð Þh2,

A1g1 cosh
g1
2

� 	
� A2g1 sinh

g1
2

� 	
þ B1k cosh

g2
2

� 	
� B2k sinh

g2
2

� 	
¼ Wþ �W�ð Þh2,

A1k sinh
g1
2

� 	
þ A2k sinh

g1
2

� 	
� B1g2 sinh

g2
2

� 	
� B2g2 cosh

g2
2

� 	
¼ Uþ þU�ð Þh2

þ
hh1

2
k Wþ þW�ð Þ,

� A1k sinh
g1
2

� 	
þ A2k sinh

g1
2

� 	
þ B1g2 sinh

g2
2

� 	
� B2g2 cosh

g2
2

� 	
¼ Uþ �U�ð Þh2

þ
hh1

2
k Wþ �W�ð Þ. ð18Þ

The solution of this system is readily available as

A1 ¼
h2kU� cosh

g2
2

� �
þ hh1

2
k2Wþ cosh

g2
2

� �
þ h2g2Wþ sinh

g2
2

� �
k2 sinh g1

2

� �
cosh g2

2

� �
þ g1g2 cosh

g1
2

� �
sinh g2

2

� � , (19a)

B1 ¼
�h2g1U� cosh

g1
2

� �
� hh1

2
g1kWþ cosh

g1
2

� �
þ h2kWþ sinh

g1
2

� �
k2 sinh g1

2

� �
cosh g2

2

� �
þ g1g2 cosh

g1
2

� �
sinh g2

2

� � , (19b)

A2 ¼
h2kUþ sinh

g2
2

� �
þ hh1

2
k2W� sinh

g2
2

� �
þ h2g2W� cosh

g2
2

� �
k2 cosh g1

2

� �
sinh g2

2

� �
þ g1g2 sinh

g1
2

� �
cosh g2

2

� � , (19c)

B2 ¼
�h2g1Uþ sinh

g1
2

� �
� hh1

2
g1kW� sinh

g1
2

� �
þ h2kW� cosh

g1
2

� �
k2 cosh g1

2

� �
sinh g2

2

� �
þ g1g2 sinh

g1
2

� �
cosh g2

2

� � . (19d)
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Substitution of in-phase (W+, U�) and anti-phase (W�, U+) components of displacements to equations for
skin plies give

E1h1

h
k2
þ

E3h1

h
k2
þ r1hh1o2 þ r3hh1o2

� �
Uþ

þ
E1h1

h
k2
�

E3h1

h
k2
þ r1hh1o2 � r3hh1o2

� �
U� ¼ �qu1 � qu3, ð20aÞ

E1h1

h
k2
�

E3h1

h
k2
þ r1hh1o2 � r3hh1o2

� �
Uþ

þ
E1h1

h
k2
þ

E3h1

h
k2
þ r1hh1o2 þ r3hh1o2

� �
U� ¼ �qu1 þ qu3, ð20bÞ

E1h
3
1

12 1� n2ð Þh3
k4
þ

E3h3
1

12 1� n2ð Þh3
k4
þ s1

h1

h
k2
þ s3

h1

h
k2

"

� r1hh1o2 � r3hh1o2 �
irþh2

gþ
�

ir�h2

g�

#
Wþ

þ
E1h3

1

12 1� n2ð Þh3
k4
�

E3h
3
1

12 1� n2ð Þh3
k4
þ s1

h1

h
k2
� s3

h1

h
k2

"

� r1hh1o2 þ r3hh1o2 �
irþh2

gþ
þ

ir�h2

g�

#
W� ¼ qw1 þ qw3 �m01 �m03, ð20cÞ

E1h
3
1

12 1� n2ð Þh3
k4
�

E3h3
1

12 1� n2ð Þh3
k4
þ s1

h1

h
k2
� s3

h1

h
k2

"
�r1hh1o2 þ r3hh1o2 �

irþh2

gþ
þ

ir�h2

g�

#
Wþ

þ
E1h3

1

12 1� n2ð Þh3
k4
þ

E3h
3
1

12 1� n2ð Þh3
k4
þ s1

h1

h
k2
þ s3

h1

h
k2

"
�r1hh1o2 � r3hh1o2 �

irþh2

gþ
�

ir�h2

g�

#

�W� ¼ qw1 � qw3 �m01 þm03. ð20dÞ

The interfacial force and moment resultants are

�qu1 � qu3 ¼ �tzx

1

2

� �
þ tzx �

1

2

� �
, (21a)

�qu1 þ qu3 ¼ �tzx

1

2

� �
� tzx �

1

2

� �
, (21b)

qw1 þ qw3 �m01 �m03 ¼ �sz

1

2

� �
þ sz �

1

2

� �
þ

h1

2h

dtzx

dx






z¼�1

2

þ
h1

2h

dtzx

dx






z¼1=2

, (21c)

qw1 � qw3 �m01 þm03 ¼ �sz
1

2

� �
� sz �

1

2

� �
þ

h1

2h

dtzx

dx






z¼�1=2

�
h1

2h

dtzx

dx






z¼1=2

, (21d)

The stresses in Eq. (21) are formulated as

sz zð Þ ¼ l A1 g21 þ k2
� �

sinh g1z
� �

þ A2 g21 þ k2
� �

cosh g1z
� �� �

þ 2m A1k2 g21þ
� �

sinh g1z
� �

þ A2k2 g21þ
� �

cosh g1z
� �

� B1kg2 sinh g2z
� �

� B2kg2 cosh g2z
� �� �

, ð22aÞ

tzx zð Þ ¼ m 2A1kg1 cosh g1z
� �

þ 2A2kg1 sinh g1z
� �

þ B1 k2
� g22

� �
cosh g2z

� �
þ B2 k2

� g22
� �

sinh g2z
� �� �

. (22b)
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Stresses (22) are substituted into formulas (21) and these interfacial forces and moments are substituted into
Eq. (20) to yield the system of homogeneous linear equations with respect to W+, W�, U+, U�. It is
appropriate to write these equations as follows

z11Wþ þ z12U� þ zcW� ¼ 0;

z21Wþ þ z22U� ¼ 0;

zcWþ þ z33W� þ z34Uþ ¼ 0;

z43W� þ z44Uþ ¼ 0:

(23)

The coefficients zij, i, j ¼ 1, 2 are very cumbersome and therefore they are not presented here in an explicit
form. When the determinant of system (23) is set to zero, a dispersion equation is obtained. This equation is
valid for determining wavenumbers as a function of excitation frequency for arbitrary parameters of sandwich
plate composition and fluid loading. Its numerical solution is obtained via a code written in Mathematica [10]
by use of the algorithm suggested in Ref. [1]. Although this algorithm is capable to yield the dispersion curves
for any combination of parameters, it usage is less convenient and much more time-consuming than in the
cases considered in this reference (see similar observations reported in Ref. [6]). Therefore it has appeared to
be practical to seek an easier way for analysis of dispersion curves.

In this paper, a plate of symmetric composition is considered and the coupling between in-phase and anti-
phase components is produced either by different pre-stress of identical skin plies or by a difference in
properties of the acoustic media on opposite sides of the plate. Then it is possible to determine wavenumbers
by use of perturbation theory. It is convenient to present the dispersion equation in the form

z11z22 � z12z21ð Þ z33z44 � z34z43ð Þ � z2cz22z44 ¼ 0. (24)

The parameter zc quantifies the coupling between in-phase and anti-phase modes. The wavenumbers of
these modes are determined by the equations

F1 k;oð Þ � z11z22 � z12z21 ¼ 0, (25a)

F2 k;oð Þ � z33z44 � z34z43 ¼ 0. (25b)

These equations are solved in Ref. [1].
The coupling coefficient is

zc ¼
s1 � s3

E1

h1

h
k2
�

irþo
2h2

E1gþ
þ

ir�o
2h2

E1g�
. (26)

The symmetry-breaking effects may be analysed in the framework of a perturbation theory as long as the
parameter zc remains small.

4. The effect of static pre-stress

If the properties of the fluids on the both sides of the plate are identical, then the perturbation parameter
reduces to zc ¼ s1 � s3ð Þ=E1 h1=h

� �
k2. It is formulated as a product of the small parameter h1/h, which in naval

structures is of order 10�1, and another small parameter s1 � s3ð Þ=E1, which is of order 10�2–10�4. Thus,
a � s1 � s3ð Þ=E1h1=h is very small indeed and it is possible to apply the perturbation theory in solving the
dispersion equation

F1F2 � a2z22z44k4
¼ 0. (27)

Before addressing the case of an uneven pre-stress, it is relevant to assess the influence of symmetric
pre-stress on the location of the dispersion curves plotted hereafter in O � oh=cskin, K � kdimh,

cskin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1=r1 1� n2ð Þ

p� 	
. In Fig. 2, four sets of dispersion curves are presented for a sandwich plate of

the following parameters: h1/h ¼ 0.1, E/E1 ¼ 0.01, r/r1 ¼ 0.1, no fluid loading. The curves designated as 1 s
and 1a display wavenumbers of in-phase and anti-phase modes in a plate without any pre-stress of both skins.
The curves designated as 2 s and 2a display wavenumbers of in-phase and anti-phase modes in a plate with a
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Fig. 2. Dispersion curves (a—imaginary parts; b—real parts; c—imaginary parts, zoomed) for a plate with (curves 1a—anti-phase modes,

curves 1 s—in-phase modes) and without (curves 2a—anti-phase modes, curves 2 s—in-phase modes) pre-stress.
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very large identical pre-stress of both skins, s1/E1 ¼ s3/E1 ¼ 0.001. For convenience, a-curves are plotted in
bold. As is seen, the location of the lowest branches of a-and s-dispersion curves is influenced very
weakly by the pre-stress. Two propagating anti-phase waves exist in the whole frequency range considered,
0.35pOcut-onp0.5. The location of the first one is not influenced by pre-stress, whereas the second one is
shifted towards larger wave numbers, see Fig. 2a. The transformation of in-phase waves is the same in the
cases of a pre-stressed plate and a plate with no pre-stress. However, the magnitude of a cut-on frequency of a
pair of propagating in-phase waves in a pre-stressed plate, Ocut-onE0.369 is markedly lower, than in a plate
with no pre-stress, Ocut-onE0.403 (these propagating waves are generated due to transformation of two
complex conjugate wave numbers to a pair of purely imaginary ones). Then three propagating waves exist in
the frequency range 0.403pOp0.412 for a plate with no pre-stress and in the range 0.369pOp0.407 for a
pre-stressed plate. At the cut-off frequency (which is Ocut-offE0.407 for a pre-stressed plate and Ocut-offE0.412
for a plate with no pre-stress, see Fig. 2b), a pair of propagating waves transforms into a pair of evanescent
waves (the negative real parts are shown versus excitation frequency in Fig. 2b) and in the range
0.407pOp0.455 (pre-stressed plate) or 0.412pOp0.455 (plate with no pre-stress) only one propagating
in-phase wave exists. However, at the frequency Ocut-onE0.455 (which is the same for the plate with and
without pre-stress) the pair of attenuated waves transform to a pair of propagating ones again and one of
these waves cuts off and transforms into an evanescent wave almost immediately, so in the frequency range
OXOcut-off,2E0.457 two propagating in-phase waves exist (as in the low-frequency range). It is remarkable
that one of these branches crosses the branch of the propagating anti-phase wave. This part of Fig. 2a is
zoomed in Fig. 2c. Of course, there is no interaction between these intersecting brunches as long as the
symmetry of static pre-stress is preserved. However, as soon as pre-stress becomes uneven it is necessary to set
up both a singular expansion on the pre-stress parameter to describe the interaction between these branches,
whereas a regular expansion is sufficient in the rest of the considered frequency range.

The regular expansion of a wavenumber on parameter a2 is formulated as

k a2;o; . . .
� �

¼ k 0;o; . . .ð Þ þ
@k a2;o; . . .
� �
@ a2ð Þ






a2¼0

a2 þ � � � (28)

The first-order sensitivity qk=q a2
� �

is readily available from the derivative of Eq. (27) as

qF 1

qk
F 2 þ

qF2

qk
F 1

� �
qk

q a2ð Þ
� 4a2z22z44k3 qk

q a2ð Þ
� z22z44k4

¼ 0, (29)

and for a2 ¼ 0 it gives

qk

q a2ð Þ
¼ z22z44k4 qF 1

qk
F 2 þ

qF2

qk
F 1

� ��1
. (30)

This formula is valid in all cases when a wave number is not the root of both Eqs. (25).
In the case of a multiple root, expansion (28) is modified as

k a2;o; . . .
� �

¼ k 0;o; . . .ð Þ þ k1 0;o; . . .ð Þ aj j þ � � � (31)

In Fig. 3, the dispersion curves for a plate of h1/h ¼ 0.1, E/E1 ¼ 0.01, r/r1 ¼ 0.1 are shown in the case of no
pre-stress (curves 1a, 1 s) and in the case of one-side pre-stress ( s1/E1 ¼ 0.001, s3 ¼ 0), (curves 2a, 2 s). They
are obtained by direct numerical solution of the dispersion Eq. (27) and their pattern is similar to the case
illustrated in Fig. 2. In Fig. 4a these curves are zoomed and, although they are almost identical, there is a
qualitative difference between them in the vicinity of crossing point. Further zooming in Fig. 4b of the curves
plotted for the case of no pre-stress shows that a-curve simply crosses s-curve and no interaction occurs due to
the orthogonal properties of these modes. In contrast, Fig. 4c for an uneven pre-stress shows the typical (see
Refs. [7,8]) picture, when the dispersion curves do not intersect, but the modes are ‘swapped’ due to their
interaction.

Three sets of curves, which present purely imaginary wavenumbers versus excitation frequency, are plotted
in Fig. 5. The dispersion curve obtained numerically is designated as curve 1. The dispersion curve obtained by
use of regular expansion (20) is shown in Fig. 5 as curve 2. As is seen, this formula becomes invalid in the
vicinity of the intersection point. The dispersion curve obtained by use of singular expansion (31) is presented
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Fig. 3. Dispersion curves (a—imaginary parts; b—real parts) for a plate with an uneven pre-stress (curves 1) and without pre-stress

(curves 2).
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as curve 3. It is seen that this approximation totally recovers the correct behaviour at the intersection point,
but it gives a systematic error outside this region. The asymptotic expansions (28) and (31) are truncated to the
first-order corrections, because they yield perturbed wavenumbers with sufficient accuracy. The continuation
of these expansions to higher-order corrections is standard, but it appears to be unnecessary in all considered
cases.

5. The effect of one-side fluid loading

In naval engineering, it is typical to deal with plates and shells which are loaded on one side by water and on
the other side by air, or a fluid with different properties (e.g., an oil). Then the symmetry may be broken both
by an uneven static pre-stress and by an uneven fluid loading. As is well-known, the fluid loading parameter of
density ratio is of order 10�1, whereas the static pre-stress parameter is approximately two orders of
magnitude weaker. Then the effect of fluid loading surely dominates the effect of static pre-stress so that the
perturbation parameter may be reduced as zc ¼ �irþo

2h2=E1gþ þ ir�o
2h2=E1g�. In the case of loading by

water at one side of a plate (say, underneath a plate, i.e., r� ¼ 103 kg/m3) and by an air at another side it is
realistic to put r+ ¼ 0. Consider firstly the limit case of an incompressible fluid (c�-N). Then g�|k| and
z2c ¼ �r

2
�o

4h4=E2
1k

2.



ARTICLE IN PRESS

Fig. 4. Zoomed dispersion curves (a—with an even pre-stress and with an uneven pre-stress; b—with an even pre-stress; c—with an

uneven pre-stress).
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Fig. 5. Zoomed dispersion curves for a plate with an uneven pre-stress. Curves 1—numerical solution; curves 2—regular asymptotic

expansion; curves 3—singular asymptotic expansion.
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The small parameter is introduced as b2 ¼ r2�o
4h4=E2

1 and Eq. (24) becomes

F 1F2 þ b2z22z44k�2 ¼ 0. (32)

This is a case of singular perturbation, but in the low-frequency range the propagating modes are described
by perturbed roots of the factorised dispersion Eqs. (25). Then they are conveniently presented in a regular
expansion on small parameter b.

In Fig. 6, the dispersion curves are plotted for the same parameters of sandwich plate composition
as in Section 4, h1/h ¼ 0.1, E/E1 ¼ 0.01, r/r1 ¼ 0.1 in a low-frequency range. The density ratio is taken
as r�/r1 ¼ 0.128, which corresponds to steel skins loaded by water. Both the direct solution and the
perturbation theory suggest that two propagating waves (dominantly in-phase one, curve 1 and dominantly
anti-phase one, curve 2 in Fig. 6a) exist at any frequency and they do not interact with each other. The second
anti-phase wave and the second in-phase wave are generated at Ocut-onE0.193 and Ocut-onE0.299, see curves 3,
4 in Fig. 6a. Their interaction results in the transformation of this pair of propagating waves at Ocut-onE0.458
into a pair of attenuated waves, see also Fig. 6b, where a real part of the complex-valued wavenumber is
presented.

Finally, the case of heavy fluid loading on one side of a plate is considered with compressibility taken into
account. The dispersion equation is

F1F 2 þ b2z22z44 k2
�

oh

c�

� �









�1

¼ 0. (33)

It is convenient to transform this equation as

F 1F2 k2
�

oh

c�

� �� �� �2
� b2z22z44
� �2

¼ 0. (34)

Then the perturbation technique is applied. This equation has twice as many roots as the original one (33),
so that each root obtained either directly or via perturbation method is checked whether it satisfies Eq. (33)
and whether it satisfies the Sommerfeld principle. Then it appears that in the case of loading of a plate with
h1/h ¼ 0.1, E/E1 ¼ 0.01, r/r1 ¼ 0.1 by water r�/r1 ¼ 0.128, c�/c1 ¼ 0.307, only two propagating waves
exists—in contrast with the predictions obtained when a model of an incompressible fluid is used. The
dispersion curves are shown in Fig. 7, curve 1 presents the propagating in-phase wave and curve 2 presents the
propagating anti-phase wave. Their location is not markedly altered by the effect of compressibility. This
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Fig. 7. Dispersion curves for a sandwich plate with one side loading by a compressible fluid. Curve 1—‘in-phase’ wave; curve 2—‘anti-

phase’ wave.

Fig. 6. Dispersion curves (a—imaginary parts; b—real parts) for a sandwich plate with one side loading by an incompressible fluid. Curves

1, 3—‘in-phase’ waves; curves 2, 4—‘anti-phase’ waves.

S.V. Sorokin, N. Peake / Journal of Sound and Vibration 295 (2006) 114–128 127



ARTICLE IN PRESS
S.V. Sorokin, N. Peake / Journal of Sound and Vibration 295 (2006) 114–128128
result has been already observed in Refs. [1,11] and the location of a dispersion curve for the in-phase mode
agrees very well with the predictions for the wave of the same type reported in Ref. [11].

6. Conclusions

The system of equations which describes propagation of acoustic and elastic harmonic waves in a sandwich
plate of arbitrary composition with heavy fluid loading on both sides is derived. This system is specialised for
the practically meaningful case of symmetric composition of such a plate and a classic perturbation theory is
applied to study the symmetry-breaking coupling effects in wave propagation introduced by uneven pre-stress
or by uneven fluid loading. A very good agreement between the results of asymptotic analysis in the cases of
regular and singular perturbations and the results of direct solution is observed.
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